Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles
نویسندگان
چکیده
This paper investigates the impact of silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) on the dynamic performance of permanent magnet synchronous motor (PMSM) drive systems. The characteristics of SiC MOSFETs are evaluated experimentally taking into account temperature variations. Then the switching characteristics are firstly introduced into the transfer function of a SiC-inverter fed PMSM drive system. The main contribution of this paper is the investigation of the dynamic control performance features such as the fast response, the stability and the robustness of the drive system considering the characteristics of SiC MOSFETs. All the results of the SiC-drive system are compared to the silicon-(Si) insulated gate bipolar transistors (IGBTs) drive system counterpart, and the SiC-drive system manifests a higher dynamic performance than the Si-drive system. The analytical results have been effectively validated by experiments on a test bench.
منابع مشابه
Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملInner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere
Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...
متن کاملGeometry optimization of five-phase permanent magnet synchronous motors using Bees algorithm
Among all types of electrical motors, permanent magnet synchronous motors (PMSMs) are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecraf...
متن کامل